Перевод: со всех языков на английский

с английского на все языки

wheel mills

  • 1 бегуны

    1) General subject: grinding-mill
    2) Geology: adge-mill
    4) Construction: wet pan
    11) Polymers: crushers, edge( - runner) mill, grinding rolls, kollergang, kollermill, roller mill

    Универсальный русско-английский словарь > бегуны

  • 2 Kelly, William

    SUBJECT AREA: Textiles
    [br]
    b. 1790s Lanark, Scotland
    [br]
    Scottish pioneer in attempts to make Crompton 's spinning mule work automatically.
    [br]
    William Kelly, a Larnack clockmaker, was Manager of David Dale's New Lanark cotton-spinning mills. He was writing to Boulton \& Watt in 1796 about the different ways in which he heated the mills and the New Institution. He must also have been responsible for supervising the millwrights' and mechanics' shops where much of the spinning machinery for the mills was constructed. At one time there were eighty-seven men employed in these shops alone. He devised a better method of connecting the water wheel to the line shafting which he reckoned would save a quarter of the water power required. Kelly may have been the first to apply power to the mule, for in 1790 he drove the spinning sequence from the line shafting, which operated the gear mechanism to turn the rollers and spindles as well as draw out the carriage. The winding on of the newly spun yarn still had to be done by hand. Then in 1792 he applied for a patent for a self-acting mule in which all the operations would be carried out by power. However, winding the yarn on in a conical form was a problem; he tried various ways of doing this, but abandoned his attempts because the mechanism was cumbersome and brought no economic advantage as only a comparatively small number of spindles could be operated. Even so, his semi-automatic mule became quite popular and was exported to America in 1803. Kelly was replaced as Manager at New Lanark by Robert Owen in 1800.
    [br]
    Bibliography
    1792, British patent no. 1,879 (semi-automatic mule).
    Further Reading
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (includes Kelly's own account of his development of the self-acting mule).
    H.Catling, 1970, The Spinning Mule, Newton Abbot (describes some of Kelly's mule mechanisms).
    J.Butt (ed.), 1971, Robert Owen, Prince of Cotton Spinners, Newton Abbot (provides more details about the New Lanark mills).
    RLH

    Biographical history of technology > Kelly, William

  • 3 Lombe, John

    SUBJECT AREA: Textiles
    [br]
    b. c. 1693 probably Norwich, England
    d. 20 November 1722 Derby, England
    [br]
    English creator of the first successful powered textile mill in Britain.
    [br]
    John Lombe's father, Henry Lombe, was a worsted weaver who married twice. John was the second son of the second marriage and was still a baby when his father died in 1695. John, a native of the Eastern Counties, was apprenticed to a trade and employed by Thomas Cotchett in the erection of Cotchett's silk mill at Derby, which soon failed however. Lombe went to Italy, or was sent there by his elder half-brother, Thomas, to discover the secrets of their throwing machinery while employed in a silk mill in Piedmont. He returned to England in 1716 or 1717, bringing with him two expert Italian workmen.
    Thomas Lombe was a prosperous London merchant who financed the construction of a new water-powered silk mill at Derby which is said to have cost over £30,000. John arranged with the town Corporation for the lease of the island in the River Derwent, where Cotchett had erected his mill. During the four years of its construction, John first set up the throwing machines in other parts of the town. The machines were driven manually there, and their product helped to defray the costs of the mill. The silk-throwing machine was very complex. The water wheel powered a horizontal shaft that was under the floor and on which were placed gearwheels to drive vertical shafts upwards through the different floors. The throwing machines were circular, with the vertical shafts running through the middle. The doubled silk threads had previously been wound on bobbins which were placed on spindles with wire flyers at intervals around the outer circumference of the machine. The bobbins were free to rotate on the spindles while the spindles and flyers were driven by the periphery of a horizontal wheel fixed to the vertical shaft. Another horizontal wheel set a little above the first turned the starwheels, to which were attached reels for winding the silk off the bobbins below. Three or four sets of these spindles and reels were placed above each other on the same driving shaft. The machine was very complicated for the time and must have been expensive to build and maintain.
    John lived just long enough to see the mill in operation, for he died in 1722 after a painful illness said to have been the result of poison administered by an Italian woman in revenge for his having stolen the invention and for the injury he was causing the Italian trade. The funeral was said to have been the most superb ever known in Derby.
    [br]
    Further Reading
    Samuel Smiles, 1890, Men of Invention and Industry, London (probably the only biography of John Lombe).
    Rhys Jenkins, 1933–4, "Historical notes on some Derbyshire industries", Transactions of the Newcomen Society 14 (provides an acount of John Lombe and his part in the enterprise at Derby).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (briefly covers the development of early silk-throwing mills).
    W.English, 1969, The Textile Industry, London (includes a chapter on "Lombe's Silk Machine").
    P.Barlow, 1836, Treatise of Manufactures and Machinery of Great Britain, London (describes Lombe's mill and machinery, but it is not known how accurate the account may be).
    RLH

    Biographical history of technology > Lombe, John

  • 4 dentado

    adj.
    1 toothed, cogged, serrate, jagged.
    2 dentate, with teeth.
    3 dentulous.
    4 rack-and-pinion.
    5 crenate.
    past part.
    past participle of spanish verb: dentar.
    * * *
    1 perforation
    ————————
    1→ link=dentar dentar
    1 (con dientes) toothed
    2 (cuchillo) serrated
    3 BOTÁNICA dentate
    1 perforation
    * * *
    1.
    ADJ [filo] jagged; [sello] perforated; (Bot) dentate
    2.
    SM [de sello] perforation
    * * *
    - da adjetivo < filo> serrated

    una rueda dentada — a gearwheel, a cogwheel

    * * *
    = jagged, serrated.
    Ex. To be sure, it still has its congeries of mills and factories, its grimy huddle of frame dwellings and congested tenements, its stark, jagged skyline, but its old face is gradually changing.
    Ex. Parts of the plate were toned by roughening it with a serrated rocker, the tone then being graded by burnishing.
    ----
    * tijeras dentadas = pinking shears, pinking scissors.
    * * *
    - da adjetivo < filo> serrated

    una rueda dentada — a gearwheel, a cogwheel

    * * *
    = jagged, serrated.

    Ex: To be sure, it still has its congeries of mills and factories, its grimy huddle of frame dwellings and congested tenements, its stark, jagged skyline, but its old face is gradually changing.

    Ex: Parts of the plate were toned by roughening it with a serrated rocker, the tone then being graded by burnishing.
    * tijeras dentadas = pinking shears, pinking scissors.

    * * *
    dentado -da
    ‹filo› serrated
    una rueda dentada a gearwheel, a cogwheel, a cogged wheel
    * * *

    Del verbo dentar: ( conjugate dentar)

    dentado es:

    el participio

    dentado
    ◊ -da adjetivo ‹ filo serrated;

    una rueda dentada a gearwheel, a cogwheel

    ' dentado' also found in these entries:
    English:
    jagged
    - perforated
    - serrated
    * * *
    dentado, -a adj
    1. [rueda] cogged, toothed;
    [filo, cuchillo] serrated; [sello] perforated
    2. Bot [hojas] dentate
    * * *
    adj serrated;
    rueda dentada cogwheel
    * * *
    dentado, -da adj
    serrado: serrated, jagged

    Spanish-English dictionary > dentado

  • 5 Cotchett, Thomas

    SUBJECT AREA: Textiles
    [br]
    fl. 1700s
    [br]
    English engineer who set up the first water-powered textile mill in Britain at Derby.
    [br]
    At the beginning of the eighteenth century, silk weaving was one of the most prosperous trades in Britain, but it depended upon raw silk worked up on hand twisting or throwing machines. In 1702 Thomas Cotchett set up a mill for twisting silk by water-power at the northern end of an island in the river Derwent at Derby; this would probably have been to produce organzine, the hard twisted thread used for the warp when weaving silk fabrics. Such mills had been established in Italy beginning with the earliest in Bologna in 1272, but it would appear that Cotchett used Dutch silk-throwing machinery that was driven by a water wheel that was 13½ ft (4.1 m) in diameter and built by the local engineer, George Sorocold. The enterprise soon failed, but it was quickly revived and extended by Thomas and John Lombe with machinery based on that being used successfully in Italy.
    [br]
    Further Reading
    D.M.Smith, 1965, Industrial Archaeology of the East Midlands, Newton Abbot (provides an account of Cotchett's mill).
    W.H.Chaloner, 1963, "Sir Thomas Lombe (1685–1739) and the British silk industry", History Today (Nov.).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (a brief coverage of the development of early silk throwing mills).
    Technology, Part 9, Textile Technology: spinning and reeling, Cambridge (covers the diffusion of the techniques of the mechanization of the silk-throwing industry from China to the West).
    RLH

    Biographical history of technology > Cotchett, Thomas

  • 6 обеспечивать

    A coating of zinc is deposited on the wire to afford protection against corrosion.

    The unit assures electrical system reliability.

    It may become necessary to reduce the amine concentrations to effect easier stripping of the amine solution.

    The system is used to ensure a constant rate of flow.

    The cylinder furnishes radiation shielding.

    To gain the flexibility needed for...

    Four-wheel steering gives exceptional manoeuvrability.

    To obtain correct filter operation,...

    These gases offer better performance than nitrogen.

    The machines have been designed to permit of almost limitless possibilities in the field of...

    The diffuser provides a uniform illumination of the negative.

    The use of very large antennas will secure high efficiency in the radiation of...

    The above engineering features have given these boring mills a leading position throughout the country.

    To maintain high accuracy in milling operations,...

    The machine provides for copying intricate masters.

    Tunable dye lasers afford (or ensure) temporal resolution.

    The engine delivers (or gives) enough power.

    The overall goal is to realize the following characteristics:...

    The electronegativity difference between carbon and hydrogen is insufficient to produce a bond polarity high enough for effective hydrogen bonding.

    Русско-английский научно-технический словарь переводчика > обеспечивать

  • 7 rodezno

    m.
    1 a large wheel, consisting of many pieces.
    2 a toothed wheel in grist-mills.

    Spanish-English dictionary > rodezno

  • 8 Polhem, Christopher

    [br]
    b. 18 December 1661 Tingstade, Gotland, Sweden d. 1751
    [br]
    Swedish engineer and inventor.
    [br]
    He was the eldest son of Wolf Christopher Polhamma, a merchant. The father died in 1669 and the son was sent by his stepfather to an uncle in Stockholm who found him a place in the Deutsche Rechenschule. After the death of his uncle, he was forced to find employment, which he did with the Biorenklou family near Uppsala where he eventually became a kind of estate bailiff. It was during this period that he started to work with a lathe, a forge and at carpentry, displaying great technical ability. He realized that without further education he had little chance of making anything of his life, and accordingly, in 1687, he registered at the University of Uppsala where he studied astronomy and mathematics, remaining there for three years. He also repaired two astronomical pendulum clocks as well as the decrepit medieval clock in the cathedral. After a year's work he had this clock running properly: this was his breakthrough. He was summoned to Stockholm where the King awarded him a salary of 500 dalers a year as an encouragement to further efforts. Around this time, one of increasing mechanization and when mining was Sweden's principal industry, Pohlem made a model of a hoist frame for mines and the Mines Authority encouraged him to develop his ideas. In 1693 Polhem completed the Blankstot hoist at the Stora Kopparberg mine, which attracted great interest on the European continent.
    From 1694 to 1696 Polhem toured factories, mills and mines abroad in Germany, Holland, England and France, studying machinery of all kinds and meeting many foreign engineers. In 1698 he was appointed Director of Mining Engineering in Sweden, and in 1700 he became Master of Construction in the Falu Mine. He installed the Karl XII hoist there, powered by moving beams from a distant water-wheel. His plan of 1697 for all the machinery at the Falu mine to be driven by three large and remote water-wheels was never completed.
    In 1707 he was invited by the Elector of Hanover to visit the mines in the Harz district, where he successfully explained many of his ideas which were adopted by the local engineers. In 1700, in conjunction with Gabriel Stierncrona, he founded the Stiersunds Bruk at Husby in Southern Dalarna, a factory for the mass production of metal goods in iron, steel and bronze. Simple articles such as pans, trays, bowls, knives, scissors and mirrors were made there, together with the more sophisticated Polhem lock and the Stiersunds clock. Production was based on water power. Gear cutting for the clocks, shaping hammers for plates, file cutting and many other operations were all water powered, as was a roller mill for the sheet metal used in the factory. He also designed textile machinery such as stocking looms and spinning frames and machines for the manufacture of ribbons and other things.
    In many of his ideas Polhem was in advance of his time and Swedish country society was unable to absorb them. This was largely the reason for the Stiersund project being only a partial success. Polhem, too, was of a disputatious nature, self-opinionated almost to the point of conceit. He was a prolific writer, leaving over 20,000 pages of manuscript notes, drafts, essays on a wide range of subjects, which included building, brick-making, barrels, wheel-making, bell-casting, organ-building, methods of stopping a horse from bolting and a curious tap "to prevent serving maids from sneaking wine from the cask", the construction of ploughs and threshing machines. His major work, Kort Berattelse om de Fornamsta Mechaniska Inventioner (A Brief Account of the Most Famous Inventions), was printed in 1729 and is the main source of knowledge about his technological work. He is also known for his "mechanical alphabet", a collection of some eighty wooden models of mechanisms for educational purposes. It is in the National Museum of Science and Technology in Stockholm.
    [br]
    Bibliography
    1729, Kort Berattelse om de Fornamsta Mechaniska Inventioner (A Brief Account of the Most Famous Inventions).
    Further Reading
    1985, Christopher Polhem, 1661–1751, TheSwedish Daedalus' (catalogue of a travelling exhibition from the Swedish Institute in association with the National Museum of Science and Technology), Stockholm.
    IMcN

    Biographical history of technology > Polhem, Christopher

  • 9 бегуны для мокрого размола

    2) Oil: wet grinder
    3) Plastics: wet pan mills

    Универсальный русско-английский словарь > бегуны для мокрого размола

  • 10 kinu

    ------------------------------------------------------------
    [Swahili Word] kinu
    [Swahili Plural] vinu
    [English Word] mortar
    [English Plural] mortars
    [Part of Speech] noun
    [Class] 7/8
    ------------------------------------------------------------
    [Swahili Word] kinu
    [Swahili Plural] vinu
    [English Word] press
    [English Plural] presses
    [Part of Speech] noun
    [Class] 7/8
    ------------------------------------------------------------
    [Swahili Word] kinu
    [Swahili Plural] vinu
    [English Word] mill
    [English Plural] mills
    [Part of Speech] noun
    [Class] 7/8
    ------------------------------------------------------------
    [Swahili Word] kinu cha kushindikia mafuta
    [Swahili Plural] vinu vya kushindikia mafuta
    [English Word] oil press
    [English Plural] oil presses
    [Part of Speech] noun
    [Class] 7/8
    [Related Words] -shindikia, mafuta
    ------------------------------------------------------------
    [Swahili Word] kinu
    [Swahili Plural] vinu
    [English Word] machine
    [English Plural] machines
    [Part of Speech] noun
    [Class] 7/8
    ------------------------------------------------------------
    [Swahili Word] kinu cha kuchambulia pamba
    [Swahili Plural] vinu vya kuchambulia pamba
    [English Word] cotton gin
    [English Plural] cotton gins
    [Part of Speech] noun
    [Class] 7/8
    [Related Words] -chambulia, pamba
    ------------------------------------------------------------
    [Swahili Word] kinu cha moshi
    [Swahili Plural] vinu vya moshi
    [English Word] steam engine
    [English Plural] steam engines
    [Part of Speech] noun
    [Class] 7/8
    [Related Words] moshi
    [Terminology] railway
    ------------------------------------------------------------
    [Swahili Word] kinu cha taa
    [Swahili Plural] vinu vya taa
    [English Word] power plant
    [English Plural] power plants
    [Part of Speech] noun
    [Class] 7/8
    [Related Words] taa
    [Terminology] electricity
    ------------------------------------------------------------
    [Swahili Word] kinu cha stimu
    [Swahili Plural] vinu vya stimu
    [English Word] power plant
    [English Plural] power plants
    [Part of Speech] noun
    [Class] 7/8
    [Related Words] stimu
    [Terminology] electricity
    ------------------------------------------------------------
    [Swahili Word] kinu
    [Swahili Plural] vinu
    [English Word] hub (of a wheel or bicycle)
    [English Plural] hubs
    [Part of Speech] noun
    [Class] 7/8
    ------------------------------------------------------------

    Swahili-english dictionary > kinu

  • 11 volandera

    f.
    1 runner, the stone which runs edgewise upon another stone. (In oil-mills)
    2 a vague or flying report, lie. (Colloquial)
    3 wash of an axle-tree, nave-box of a wheel.
    4 ledge on a type galley. (Printing)
    5 scallop.
    * * *
    1 (piedra del molino) millstone
    * * *
    SF
    1) (=piedra) millstone, grindstone
    2) (Mec) washer
    3) * (=mentira) fib
    * * *
    femenino ( de molino) upper millstone, runner; (Mec) bush, bushing
    * * *
    femenino ( de molino) upper millstone, runner; (Mec) bush, bushing
    * * *
    1 (de molino) upper millstone, runner
    2 ( Mec) bush, bushing
    * * *
    1. [arandela] washer
    2. [de molino] grindstone, millstone

    Spanish-English dictionary > volandera

  • 12 Cartwright, Revd Edmund

    [br]
    b. 24 April 1743 Marnham, Nottingham, England
    d. 30 October 1823 Hastings, Sussex, England
    [br]
    English inventor of the power loom, a combing machine and machines for making ropes, bread and bricks as well as agricultural improvements.
    [br]
    Edmund Cartwright, the fourth son of William Cartwright, was educated at Wakefield Grammar School, and went to University College, Oxford, at the age of 14. By special act of convocation in 1764, he was elected Fellow of Magdalen College. He married Alice Whitaker in 1772 and soon after was given the ecclesiastical living of Brampton in Derbyshire. In 1779 he was presented with the living of Goadby, Marwood, Leicestershire, where he wrote poems, reviewed new works, and began agricultural experiments. A visit to Matlock in the summer of 1784 introduced him to the inventions of Richard Arkwright and he asked why weaving could not be mechanized in a similar manner to spinning. This began a remarkable career of inventions.
    Cartwright returned home and built a loom which required two strong men to operate it. This was the first attempt in England to develop a power loom. It had a vertical warp, the reed fell with the weight of at least half a hundredweight and, to quote Gartwright's own words, "the springs which threw the shuttle were strong enough to throw a Congreive [sic] rocket" (Strickland 19.71:8—for background to the "rocket" comparison, see Congreve, Sir William). Nevertheless, it had the same three basics of weaving that still remain today in modern power looms: shedding or dividing the warp; picking or projecting the shuttle with the weft; and beating that pick of weft into place with a reed. This loom he proudly patented in 1785, and then he went to look at hand looms and was surprised to see how simply they operated. Further improvements to his own loom, covered by two more patents in 1786 and 1787, produced a machine with the more conventional horizontal layout that showed promise; however, the Manchester merchants whom he visited were not interested. He patented more improvements in 1788 as a result of the experience gained in 1786 through establishing a factory at Doncaster with power looms worked by a bull that were the ancestors of modern ones. Twenty-four looms driven by steam-power were installed in Manchester in 1791, but the mill was burned down and no one repeated the experiment. The Doncaster mill was sold in 1793, Cartwright having lost £30,000, However, in 1809 Parliament voted him £10,000 because his looms were then coming into general use.
    In 1789 he began working on a wool-combing machine which he patented in 1790, with further improvements in 1792. This seems to have been the earliest instance of mechanized combing. It used a circular revolving comb from which the long fibres or "top" were. carried off into a can, and a smaller cylinder-comb for teasing out short fibres or "noils", which were taken off by hand. Its output equalled that of twenty hand combers, but it was only relatively successful. It was employed in various Leicestershire and Yorkshire mills, but infringements were frequent and costly to resist. The patent was prolonged for fourteen years after 1801, but even then Cartwright did not make any profit. His 1792 patent also included a machine to make ropes with the outstanding and basic invention of the "cordelier" which he communicated to his friends, including Robert Fulton, but again it brought little financial benefit. As a result of these problems and the lack of remuneration for his inventions, Cartwright moved to London in 1796 and for a time lived in a house built with geometrical bricks of his own design.
    Other inventions followed fast, including a tread-wheel for cranes, metallic packing for pistons in steam-engines, and bread-making and brick-making machines, to mention but a few. He had already returned to agricultural improvements and he put forward suggestions in 1793 for a reaping machine. In 1801 he received a prize from the Board of Agriculture for an essay on husbandry, which was followed in 1803 by a silver medal for the invention of a three-furrow plough and in 1805 by a gold medal for his essay on manures. From 1801 to 1807 he ran an experimental farm on the Duke of Bedford's estates at Woburn.
    From 1786 until his death he was a prebendary of Lincoln. In about 1810 he bought a small farm at Hollanden near Sevenoaks, Kent, where he continued his inventions, both agricultural and general. Inventing to the last, he died at Hastings and was buried in Battle church.
    [br]
    Principal Honours and Distinctions
    Board of Agriculture Prize 1801 (for an essay on agriculture). Society of Arts, Silver Medal 1803 (for his three-furrow plough); Gold Medal 1805 (for an essay on agricultural improvements).
    Bibliography
    1785. British patent no. 1,270 (power loom).
    1786. British patent no. 1,565 (improved power loom). 1787. British patent no. 1,616 (improved power loom).
    1788. British patent no. 1,676 (improved power loom). 1790, British patent no. 1,747 (wool-combing machine).
    1790, British patent no. 1,787 (wool-combing machine).
    1792, British patent no. 1,876 (improved wool-combing machine and rope-making machine with cordelier).
    Further Reading
    M.Strickland, 1843, A Memoir of the Life, Writings and Mechanical Inventions of Edmund Cartwright, D.D., F.R.S., London (remains the fullest biography of Cartwright).
    Dictionary of National Biography (a good summary of Cartwright's life). For discussions of Cartwright's weaving inventions, see: A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London; R.L. Hills, 1970, Power in the Industrial Revolution, Manchester. F.Nasmith, 1925–6, "Fathers of machine cotton manufacture", Transactions of the
    Newcomen Society 6.
    H.W.Dickinson, 1942–3, "A condensed history of rope-making", Transactions of the Newcomen Society 23.
    W.English, 1969, The Textile Industry, London (covers both his power loom and his wool -combing machine).
    RLH

    Biographical history of technology > Cartwright, Revd Edmund

  • 13 Evans, Oliver

    [br]
    b. 13 September 1755 Newport, Delaware, USA
    d. 15 April 1819 New York, USA
    [br]
    American millwright and inventor of the first automatic corn mill.
    [br]
    He was the fifth child of Charles and Ann Stalcrop Evans, and by the age of 15 he had four sisters and seven brothers. Nothing is known of his schooling, but at the age of 17 he was apprenticed to a Newport wheelwright and wagon-maker. At 19 he was enrolled in a Delaware Militia Company in the Revolutionary War but did not see active service. About this time he invented a machine for bending and cutting off the wires in textile carding combs. In July 1782, with his younger brother, Joseph, he moved to Tuckahoe on the eastern shore of the Delaware River, where he had the basic idea of the automatic flour mill. In July 1782, with his elder brothers John and Theophilus, he bought part of his father's Newport farm, on Red Clay Creek, and planned to build a mill there. In 1793 he married Sarah Tomlinson, daughter of a Delaware farmer, and joined his brothers at Red Clay Creek. He worked there for some seven years on his automatic mill, from about 1783 to 1790.
    His system for the automatic flour mill consisted of bucket elevators to raise the grain, a horizontal screw conveyor, other conveying devices and a "hopper boy" to cool and dry the meal before gathering it into a hopper feeding the bolting cylinder. Together these components formed the automatic process, from incoming wheat to outgoing flour packed in barrels. At that time the idea of such automation had not been applied to any manufacturing process in America. The mill opened, on a non-automatic cycle, in 1785. In January 1786 Evans applied to the Delaware legislature for a twenty-five-year patent, which was granted on 30 January 1787 although there was much opposition from the Quaker millers of Wilmington and elsewhere. He also applied for patents in Pennsylvania, Maryland and New Hampshire. In May 1789 he went to see the mill of the four Ellicot brothers, near Baltimore, where he was impressed by the design of a horizontal screw conveyor by Jonathan Ellicot and exchanged the rights to his own elevator for those of this machine. After six years' work on his automatic mill, it was completed in 1790. In the autumn of that year a miller in Brandywine ordered a set of Evans's machinery, which set the trend toward its general adoption. A model of it was shown in the Market Street shop window of Robert Leslie, a watch-and clockmaker in Philadelphia, who also took it to England but was unsuccessful in selling the idea there.
    In 1790 the Federal Plant Laws were passed; Evans's patent was the third to come within the new legislation. A detailed description with a plate was published in a Philadelphia newspaper in January 1791, the first of a proposed series, but the paper closed and the series came to nothing. His brother Joseph went on a series of sales trips, with the result that some machinery of Evans's design was adopted. By 1792 over one hundred mills had been equipped with Evans's machinery, the millers paying a royalty of $40 for each pair of millstones in use. The series of articles that had been cut short formed the basis of Evans's The Young Millwright and Miller's Guide, published first in 1795 after Evans had moved to Philadelphia to set up a store selling milling supplies; it was 440 pages long and ran to fifteen editions between 1795 and 1860.
    Evans was fairly successful as a merchant. He patented a method of making millstones as well as a means of packing flour in barrels, the latter having a disc pressed down by a toggle-joint arrangement. In 1801 he started to build a steam carriage. He rejected the idea of a steam wheel and of a low-pressure or atmospheric engine. By 1803 his first engine was running at his store, driving a screw-mill working on plaster of Paris for making millstones. The engine had a 6 in. (15 cm) diameter cylinder with a stroke of 18 in. (45 cm) and also drove twelve saws mounted in a frame and cutting marble slabs at a rate of 100 ft (30 m) in twelve hours. He was granted a patent in the spring of 1804. He became involved in a number of lawsuits following the extension of his patent, particularly as he increased the licence fee, sometimes as much as sixfold. The case of Evans v. Samuel Robinson, which Evans won, became famous and was one of these. Patent Right Oppression Exposed, or Knavery Detected, a 200-page book with poems and prose included, was published soon after this case and was probably written by Oliver Evans. The steam engine patent was also extended for a further seven years, but in this case the licence fee was to remain at a fixed level. Evans anticipated Edison in his proposal for an "Experimental Company" or "Mechanical Bureau" with a capital of thirty shares of $100 each. It came to nothing, however, as there were no takers. His first wife, Sarah, died in 1816 and he remarried, to Hetty Ward, the daughter of a New York innkeeper. He was buried in the Bowery, on Lower Manhattan; the church was sold in 1854 and again in 1890, and when no relative claimed his body he was reburied in an unmarked grave in Trinity Cemetery, 57th Street, Broadway.
    [br]
    Further Reading
    E.S.Ferguson, 1980, Oliver Evans: Inventive Genius of the American Industrial Revolution, Hagley Museum.
    G.Bathe and D.Bathe, 1935, Oliver Evans: Chronicle of Early American Engineering, Philadelphia, Pa.
    IMcN

    Biographical history of technology > Evans, Oliver

  • 14 Laval, Carl Gustaf Patrik de

    [br]
    b. 9 May 1845 Orsa, Sweden
    d. 2 February 1913 Stockholm, Sweden
    [br]
    Swedish inventor of an advanced cream separator and a steam turbine.
    [br]
    Gustaf de Laval was educated at the Stockholm Technical Institute and Uppsala University. He proved to have an unfailing vigour and variety in his inventive talent, for his interests ranged from electric lighting and electrometallurgy to aerodynamics. In the 1890s he employed over one hundred engineers to develop his inventions, but he was best known for two: the cream separator and a steam turbine. In 1877 he invented the high-speed centrifugal cream separator, which was probably the greatest advance in butter-making up to that time. By 1880 the separators were being successfully marketed all over the world, for they were quickly adopted in larger dairies where they effected enormous savings in labour and space. He followed this with various devices for the dairy industry, including a vacuum milking machine perfected in 1913. In c. 1882, de Laval invented a turbine on the principle of Hero's engine, but he quickly turned his attention to the impulse type, which was like Branca's, with a jet of steam impinging on a set of blades around the periphery of a wheel. He applied for a British patent in 1889. The steam was expanded in a single stage from the initial to the final pressure: to secure economy with the steam issuing at high velocity, the blades also had to rotate at high velocity. An early 5 hp (3.7 kW) turbine rotated at 30,000 rpm, so reduction gearing had to be introduced. Production started in Sweden in 1893 and in other countries at about the same time. In 1892 de Laval proposed employing one of his turbines of 15 hp (11 kW) in an experimental launch, but there is no evidence that it was ever actually installed in a vessel. However, his turbines were popular for powering electric generating sets for lighting textile mills and ships, and by 1900 were available in sizes up to 300 bhp (224 kW).
    [br]
    Bibliography
    1889, British patent no. 7,143 (steam turbine).
    Further Reading
    T.Althin, 1943, Life of de Laval, Stockholm (a full biography).
    T.I.Williams (ed.), 1969, A Biographical Dictionary of Scientists, London: A. \& C. Black (contains a brief biography).
    R.M.Neilson, 1902, The Steam Turbine, London: Longmans, Green \& Co. (fully covers the development of de Laval's steam turbine).
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press (contains a short account of the development of the steam turbine).
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (contains a short account).
    RLH

    Biographical history of technology > Laval, Carl Gustaf Patrik de

  • 15 Leupold, Jacob

    [br]
    b. 25 May 1674 Planitz, Germany
    d. 12 January 1727 Leipzig, Germany
    [br]
    German scientist famous for his nine-volume work, which comes under the general title Theatrum Machinarum.
    [br]
    Leupold was essentially an academic of great learning in the tradition of the Renaissance. He was basically a scientist with a principal interest in the extraction of minerals, and in 1725 was made a Commissioner of Mines. He was also a member of the Academy of Berlin. The nine volumes of his work Theatrum Machinarum are detailed studies of the various disciplines, with existing practices illustrated in woodcuts. These nine volumes (see below, Bibliography) were brought to England by the younger members of the aristocracy returning from their Grand Tour. The large water-wheel created for raising water at Painshill, in Surrey, was a straight copy of the relevant illustration in Wasser- Bau-Kunst (1724). The volume Mühlen-Bau-Kunst is a good reference book on German milling practice, which remains essentially unchanged in existing mills.
    [br]
    Bibliography
    The nine volumes of Theatrum Machinarum were all reprinted in Hanover in the 1980s. The original dates of publication were as follows: 1722, Schau-Platz der Rechen-und Mess-kunst; 1724, Schau-Platz der Wasser-Bau-Kunst; 1724, Schau-Platz der Wasser-Künste; 1724, Schau-Platz des Grundes der mechanischen Wissenschaften; 1725, Schau-Platz der Heb-Zeuge; 1726, Schau-Platz der Gewicht-Kunst und Waagen; 1726, Schau-Platz der Brücken und des Brücken-Bauer, 1729, Zusatz zum Schau-Platz der Machinen und Instrumenten; 1735, Schau-Platz der Mühlen-Bau-Kunst.
    KM

    Biographical history of technology > Leupold, Jacob

  • 16 Savery, Thomas

    [br]
    b. c. 1650 probably Shilston, near Modbury, Devonshire, England
    d. c. 15 May 1715 London, England
    [br]
    English inventor of a partially successful steam-driven pump for raising water.
    [br]
    Little is known of the early years of Savery's life and no trace has been found that he served in the Army, so the title "Captain" is thought to refer to some mining appointment, probably in the West of England. He may have been involved in the Glorious Revolution of 1688, for later he was well known to William of Orange. From 1705 to 1714 he was Treasurer for Sick and Wounded Seamen, and in 1714 he was appointed Surveyor of the Water Works at Hampton Court, a post he held until his death the following year. He was interested in mechanical devices; amongst his early contrivances was a clock.
    He was the most prolific inventor of his day, applying for seven patents, including one in 1649, for polishing plate glass which may have been used. His idea for 1697 for propelling ships with paddle-wheels driven by a capstan was a failure, although regarded highly by the King, and was published in his first book, Navigation Improved (1698). He tried to patent a new type of floating mill in 1707, and an idea in 1710 for baking sea coal or other fuel in an oven to make it clean and pure.
    His most famous invention, however, was the one patented in 1698 "for raising water by the impellent force of fire" that Savery said would drain mines or low-lying land, raise water to supply towns or houses, and provide a source of water for turning mills through a water-wheel. Basically it consisted of a receiver which was first filled with steam and then cooled to create a vacuum by having water poured over the outside. The water to be pumped was drawn into the receiver from a lower sump, and then high-pressure steam was readmitted to force the water up a pipe to a higher level. It was demonstrated to the King and the Royal Society and achieved some success, for a few were installed in the London area and a manufactory set up at Salisbury Court in London. He published a book, The Miner's Friend, about his engine in 1702, but although he made considerable improvements, due to excessive fuel consumption and materials which could not withstand the steam pressures involved, no engines were installed in mines as Savery had hoped. His patent was extended in 1699 until 1733 so that it covered the atmospheric engine of Thomas Newcomen who was forced to join Savery and his other partners to construct this much more practical engine.
    [br]
    Principal Honours and Distinctions
    FRS 1706.
    Bibliography
    1698, Navigation Improved.
    1702, The Miner's Friend.
    Further Reading
    The entry in the Dictionary of National Biography (1897, Vol. L, London: Smith Elder \& Co.) has been partially superseded by more recent research. The Transactions of the Newcomen Society contain various papers; for example, Rhys Jenkins, 1922–3, "Savery, Newcomen and the early history of the steam engine", Vol. 3; A.Stowers, 1961–2, "Thomas Newcomen's first steam engine 250 years ago and the initial development of steam power", Vol. 34; A.Smith, 1977–8, "Steam and the city: the committee of proprietors of the invention for raising water by fire", 1715–1735, Vol. 49; and J.S.P.Buckland, 1977–8, "Thomas Savery, his steam engine workshop of 1702", Vol. 49. Brief accounts may be found in H.W. Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press, and R.L. Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press. There is another biography in T.I. Williams (ed.), 1969, A Biographical Dictionary of Scientists, London: A. \& C.Black.
    RLH

    Biographical history of technology > Savery, Thomas

  • 17 değirmenlik

    1. place where there are many mills. 2. enough (water) to turn one mill wheel.

    Saja Türkçe - İngilizce Sözlük > değirmenlik

См. также в других словарях:

  • Mills Novelty Company — Mills Novelty Company, Incorporated Industry slot machines, vending machines and juke boxes Fate Divestment (jukeboxes); divestment and merger (slot machines); and acquisition (vending machines) Successor Mills Novelty Co. Restores sells violanos …   Wikipedia

  • water wheel — wheel that is turned by the force of flowing water (used to operate machinery, mills, etc.) …   English contemporary dictionary

  • Water wheel — This article is about the machine for converting energy of flowing or falling water. For paddle wheels used to propel watercraft, see paddle wheel ship. For wheels used solely to lift water, see Noria. For factories or industries driven by water… …   Wikipedia

  • Reverse overshot water-wheel — Frequently used in mines and probably elsewhere, the reverse overshot water wheel was a Roman innovation to help remove water from the lowest levels of underground workings. It is described by Vitruvius in his work De Architectura published circa …   Wikipedia

  • Two-wheel tractor — in Italy (2008) Two wheel tractor or walking tractor are generic terms understood in the USA and in parts of Europe to represent a single axle tractor, which is a tractor with one axle, self powered and self propelled, which can pull and power… …   Wikipedia

  • Che Mills — Born Gloucester, England Other names Urban Monkey, Beautiful, The Killer of Eagles Nationality English Height 6 ft 1 in (1.85 m) …   Wikipedia

  • Nankin Mills Nature Center — Location: 33175 Ann Arbor Trail, Westland, Michigan Coordinates …   Wikipedia

  • Heather Mills — Infobox Person name = Heather Anne Mills image size = caption = birth name = birth date = birth date and age|1968|1|12|df=yes birth place = Aldershot, Hampshire, England residence = Robertsbridge, and Hove nationality = English education =… …   Wikipedia

  • Derwent Valley Mills — Derwent Valley Mills * UNESCO World Heritage Site Country Unit …   Wikipedia

  • Ballincollig Royal Gunpowder Mills — was one of three Royal gunpowder mills that manufactured gunpowder for the British Government. The Ballincollig gunpowder mills were opened in the late 18th Century; and were bought by the Board of Ordnance in 1804. They are situated in the town… …   Wikipedia

  • Eleutherian Mills — Infobox nrhp | name =Eleutherian Mills nrhp type =nhl caption = Working powder mills on Brandywine Creek, about 1905. Note the handwritten These blow up occasionally, and then? nearest city= Wilmington, Delaware locmapin = Delaware area = built… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»